skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seversky, Lee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a combined model, which integrates the latent factor model and a sparse graphical model, for network data. It is noticed that neither a latent factor model nor a sparse graphical model alone may be sufficient to capture the structure of the data. The proposed model has a latent (i.e., factor analysis) model to represent the main trends (a.k.a., factors), and a sparse graphical component that captures the remaining ad‐hoc dependence. Model selection and parameter estimation are carried out simultaneously via a penalized likelihood approach. The convexity of the objective function allows us to develop an efficient algorithm, while the penalty terms push towards low‐dimensional latent components and a sparse graphical structure. The effectiveness of our model is demonstrated via simulation studies, and the model is also applied to four real datasets: Zachary's Karate club data, Kreb's U.S. political book dataset (http://www.orgnet.com), U.S. political blog dataset , and citation network of statisticians; showing meaningful performances in practical situations. 
    more » « less